

HP 3D High Reusability (HR) PA 12 FR, enabled by Evonik

with the HP Jet Fusion 5600 Series 3D Printing Solution

Halogen-free Flame Retardant (FR) material with 60% reusability,¹ disruptive cost per part,² and smooth surface finish³

60% reusability¹

Maximize powder efficiency with a 60% reusability ratio¹

- Disruptive cost per part: Reduce variable cost per part and your total cost of ownership²
- Minimize waste while balancing performance and reusability
- Reduced carbon footprint: Manufactured using renewable energy sources and biomethane for polymer production⁶

Flame Retardant

Halogen-free material,⁴ UL94 certified⁵

- Made with halogen-free chemicals⁴
- Achieves UL94 V0 flammability safety standard at 2.5 mm thickness⁵
- PA12 particles encapsulated with FR particles provide homogenous flammability across parts

Premium quality

Produce quality parts with premium surface aesthetics

- Smooth surface: Achieve premium surface aesthetic parts directly from the printer that are up to 60% smoother⁷
- Isotropic properties: Produce functional prototypes and final parts with fine detail and dimensional accuracy across a variety of applications

General properties

Reusability	60%	
	Value	Method
Part density (g/cm ³)	1.13	ASTM D792
Melting temperature (°C)	187	DSC analysis
Powder melting point (DSC) (°C / °F)	187 / 369	ASTM D3418
Particle size (µm)	55	ASTM D3451
Bulk density of powder (g/cm ³ / lb/in ³)	0.47 / 0.017	ASTM D1895

Mechanical properties⁸

	Axis	Average value	Method
Tensile Strength (MPa) ⁱ	XY	46	ASTM D638
	Z	46	
Tensile Modulus (MPa) ⁱⁱ	XY	2580	ASTM D638
	Z	2540	
Elongation at Yield (%)	XY	3.8	ASTM D638
	Z	3.6	
Elongation at Break (%) ⁱⁱⁱ	XY	4.7	ASTM D638
	Z	4	
Izod Impact Notched (kJ/m ²) ^{iv}	XY	2.8	ASTM D256
	Z	2.7	
Heat Deflection Temperature 0.45 MPa (°C)	XY	172	ASTM D648
	Z		
Heat Deflection Temperature 1.82 MPa (°C)	XY	97	ASTM D648
	Z		
Ball pressure (°C)	XYZ	165	IEC 60695

i. 95% of measured tensiles show Tensile Strength above 38 MPa.
 ii. 95% of measured tensiles show Modulus values between 2250 to 2850 MPa.
 iii. 95% of measured tensiles show Elongation at Break in XY-direction above 3.5% and Elongation at Break in Z-direction above 3%.
 iv. Using the Izod test method A with notched at 3.2 mm specimen according to the ASTM D256 standard.

Electrical properties

	Orientation	Value	Method
Comparative Tracking Index (CTI) (V)	XY	408	ASTM D3638
	Z	423	
Dielectric Strength (Conditioning 48 h / 23 °C / 50% RH) (kV/mm)	XY	7.6	ASTM D149
	Z	6.7	
Dielectric Strength (Conditioning 96 h / 35 °C / 90% RH) (kV/mm)	XY	2.5	ASTM D149
	Z	1.9	
Volume Resistivity at 23 °C / 50% RH (Ω·cm)	XY	4.96E+13	ASTM D257
	Z	5.71E+13	
Surface Resistivity at 23 °C / 50% RH (Ω)	XY	9.74E+14	ASTM D257
	Z	1.03E+15	

Flammability properties

		UL 94 (Blue Card available)			High-Current Arc Ignition (HAI)			Hot Wire Ignition (HWI)		
Thickness	Orientation	Value	Unit	Method	Value	Unit	Method	Value	Unit	Method
1 mm	XYZ	HB	Pass	UL 94	PLC 0	Pass	UL 746A	PLC 4	Pass	UL 746A
1.8 mm	XYZ	V2	Pass		PLC 0	Pass		PLC 2	Pass	
2.5 mm	XYZ	V0	Pass		PLC 0	Pass		PLC 1	Pass	

Glow Wire Flammability Index (GWFI)			Glow Wire Ignition Test (GWIT)		
Thickness	Orientation	Value	Unit	Method	Value
Please reach out to an HP representative for test results.					

Railway	Thickness	Value	Unit	Method
R22	1.4 mm	HL2	Pass	EN 45545-2
	1.4 mm to 10 mm	HL1		
R23	1.4 mm to 10 mm	HL2	Pass	EN 45545-2
R24	1.4 mm to 10 mm	HL2	Pass	

Dimensional capabilities

The following results were based on internal testing using the Test Job. Results may vary with other jobs and geometries. Testing was performed for HP 3D HR PA 12 FR with a 60% refresh ratio using the PA 12 FR Balanced print profile, natural cooling, and measured after bead-blasting with glass beads at 5-6 bars. All HP-recommended printer setup and adjustment processes were following and printheads were aligned.

Tolerances for $C_{pk} = 1.33^{i.ii.iii}$ (in mm)	Nominal dimension					
	0 - 30 mm		30 - 50 mm		50 - 80 mm	
	XY	Z	XY	Z	XY	Z
With the general dimensional profile for the HP Jet Fusion 5600 Series 3D Printing Solution	±0.20	±0.42	±0.25	±0.50	±0.30	±0.60

i. Based on internal testing and measured using the "HP dimensional capability characterization job". Results may vary with other jobs and geometries.
 ii. Using HP 3D HR PA 12 FR, enabled by Evonik material, 60% refresh ratio, Balanced PA 12 FR print profile, natural cooling, and measured after bead-blasting with glass beads at 5-6 bars.
 iii. Following all HP-recommended printer setup and adjustment processes and printheads aligned using semi-automatic procedure.

This table shows the dimensional tolerances obtained during the characterizations of the Test Job for a target process capability of $Cpk=1.00$ (3 sigma)

Tolerances for $C_{pk} = 1.00^{i.ii.iii}$ (in mm)	Nominal dimension					
	0 - 30 mm		30 - 50 mm		50 - 80 mm	
	XY	Z	XY	Z	XY	Z
With the general dimensional profile for the HP Jet Fusion 5600 Series 3D Printing Solution	±0.15	±0.34	±0.18	±0.40	±0.22	±0.47

i. Based on internal testing and measured using the "HP dimensional capability characterization job". Results may vary with other jobs and geometries.
 ii. Using HP 3D HR PA 12 FR, enabled by Evonik material, 60% refresh ratio, Balanced PA 12 FR print profile, natural cooling, and measured after bead-blasting with glass beads at 5-6 bars.
 iii. Following all HP-recommended printer setup and adjustment processes and printheads aligned using semi-automatic procedure.

Ordering information*

Product number	Material
AN5S8A	HP 3D HR PA12 FR enabled by Evonik 300L/130 kg Material
AN5S9A	HP 3D HR PA12 FR enabled by Evonik 300L/130 kg Production Material
AN5T0A	HP 3D HR PA12 FR enabled by Evonik 1400L/600 kg Material

*Only available for the HP Jet Fusion 5600 Series 3D Printing Solution.

Safety datasheet*

Product number	Material
AN5S8A	HP 3D HR PA12 FR enabled by Evonik 300L/130 kg Material
AN5S9A	HP 3D HR PA12 FR enabled by Evonik 300L/130 kg Production Material
AN5T0A	HP 3D HR PA12 FR enabled by Evonik 1400L/600 kg Material

*The link provided refer to US English version of the Safety Datasheet.

Other country specific Safety Datasheets are available [here](#).

If you need more information please contact your HP AM representative.

1. HP Jet Fusion 5600 Series 3D Printing Solutions using HP 3D High Reusability PA 12 FR, enabled by Evonik, provide 60% powder reusability ratio, producing functional parts batch after batch. For testing, material is aged in real printing conditions and powder is tracked by generations (worst case for reusability). Parts are then made from each generation and tested for mechanical properties and accuracy.
2. Based on internal testing and public data for solutions on market as of March 2025. Cost analysis based on: standard solution configuration price, supplies price, and maintenance costs recommended by manufacturer. Cost criteria: printing 2 full build chambers of parts per week over 1 year of 41 cm³ parts at 8% packing density on Balanced print mode using HP 3D High Reusability PA 12 FR material on HP Jet Fusion 5600 Series 3D Printing Solutions, and the powder reusability ratio recommended by manufacturer, and printing under certain build conditions and part geometries.
3. Compatible with HP Jet Fusion 5600 Series 3D Printing Solutions.
4. This flame retardant is non-halogenated according to IEC 61249-2-21, based on Evonik material composition as of January 2025.
5. Based on testing done by UL and reported on UL blue card on March, 2025.
6. Based on carbon emissions calculations comparing HP 3D HR PA 12 FR, enabled by Evonik material with a theoretical version of the same material manufactured with non-renewable energy sources.
7. Based on internal HP testing for Linear Surface roughness (Ra). HP tested 5 copies using HP 3D HR PA 12, enabled by Evonik and HP 3D HR PA 12 FR, enabled by Evonik (both using Balanced print mode) with the HP Jet Fusion 5600 series 3D Printing Solution and post processed with sandblasting. Tested all 5 faces of the printed part.
8. Based on internal testing and measured using the "HP Half_Commercial_Datasheet_Job" and 2 material lots following material quality control guidelines. Results may vary with other geometries, jobs, material lots, and material conditions. Using HP 3D HR PA 12 FR, enabled by Evonik, Balanced print profile, natural cooling, and measured after bead-blasting with glass beads at 5-6 bars. Following all HP-recommended printer setup and adjustment processes and printheads aligned. Tensiles measured within 40h to 170h of being printed.