

Technical Data Sheet

Innofil3D PAHT CF15

Date / Revised: 17.06.2019 Version No.: 2.0

General information

Components

High temperature Polyamide based filament filled with 15% carbon fibers for Fused Filament Fabrication.

Product Description

PAHT CF15 is a high-performance 3D printing filament that opens new application fields in FFF printing. In parallel to its advanced mechanical properties, dimensional stability, and chemical resistance, it has very good processability. It works in any FFF printer with a hardened nozzle. In addition to that, it is compatible with water-soluble support material and HiPS, which allow printing complex geometries that work in challenging environments. PAHT CF15 has high heat resistance up to 130 °C and low moisture absorption.

Delivery form and warehousing

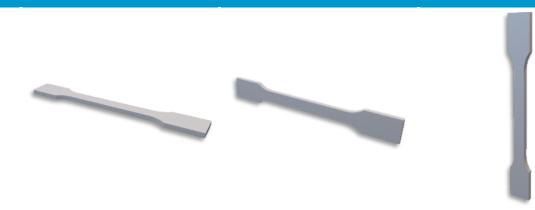
Innofil3D PAHT CF15 filament should be stored at 15 - 25°C in its originally sealed package in a clean and dry environment. If the recommended storage conditions are observed the products will have a minimum shelf life of 12 months.

Product safety

Recommended: Process materials in a well ventilated room, or use professional extraction systems. For further and more detailed information please consult the corresponding material safety data sheets.

Notice

The data contained in this publication are based on our current knowledge and experience. In view of the many factors that may affect processing and application of our product, these data do not relieve processors from carrying out their own investigations and tests; neither do these data imply any guarantee of certain properties, nor the suitability of the product for a specific purpose. Any descriptions, drawings, photographs, data, proportions, weights etc. given herein may change without prior information and do not constitute the agreed contractual quality of the product. It is the responsibility of the recipient of our products to ensure that any proprietary rights and existing laws and legislation are observed.


Recommended 3D-Print processing parameters				
Nozzle Temperature	260 – 280 °C / 500 – 536 °F			
Build Chamber Temperature	-			
Bed Temperature	100 – 120 °C / 212 – 248 °F			
Bed Material	PEI or Glass			
Nozzle Diameter	≥ 0.6 mm, Ruby or Hardened			
Print Speed	30 - 80 mm/s			

Drying Recommendations			
Drying recommendations to ensure printability	70 °C in a hot air dryer for 4 to 16 hours		
Optimum drying recommendations for best mechanical part properties	80 °C in a vacuum oven for at least 40 hours		
Please note: To ensure constant material properties the material should always be kept dry.			

General Properties		Standard
Printed Part Density	1234 kg/m ³ / 77.0 lb/ft ³	ISO 1183-1

Thermal Properties		Standard
HDT at 1.8 MPa (conditioned)	91 °C / 196 °F	ISO 75-2
HDT at 0.45 MPa (conditioned)	128 °C / 262 °F	ISO 75-2
Glass Transition Temperature	72 °C / 162 °F	ISO 11357-2
Crystallization Temperature	153 °C / 307 °F	ISO 11357-3
Melting Temperature	211 – 235 °C / 412 – 455 °F	ISO 11357-3

Mechanical Properties

Print direction	Standard	XY	XZ	ZX
		Flat	On its edge	Upright
Tensile strength	ISO 527	62.9 MPa / 9.1 ksi	-	19.1 MPa / 2.8 ksi
Elongation at Break	ISO 527	2.9 %	-	0.8 %
Young's Modulus	ISO 527	5052 MPa / 733 ksi	-	2455 MPa / 356 ksi
Flexural Strength	ISO 178	125.1 MPa / 18.1 ksi	121.9 MPa / 17.7 ksi	56.0 MPa / 8.1 ksi
Flexural Modulus	ISO 178	6063 MPa / 879 ksi	6260 MPa / 908 ksi	2190 MPa / 318 ksi
Flexural Strain at Break	ISO 178	No break	3.6 %	4.0 %